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The unsteady magnetohydrodynamic flow of two immiscible fluids in a horizontal channel bounded by two 
parallel porous isothermal plates in the presence of an applied magnetic and electric field is investigated. The 
flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, 
one being stationary and the other oscillating, when both fluids are considered as electrically conducting. Also, 
both fluids are assumed to be incompressible with variable properties, viz. different viscosities, thermal and 
electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding 
plates are maintained at constant and equal temperatures. The governing equations are partial in nature, which are 
then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for velocity 
and temperature distributions are obtained in both fluid regions of the channel. Profiles of these solutions are 
plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing 
parameters involved, such as the Hartmann number, porous parameter, ratios of the viscosities, heights, electrical 
and thermal conductivities. 
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1. Introduction 
 
 Many problems relating to plasma physics, aeronautics, geophysics and in petroleum industry, also 
in industrial applications, etc; involve multi layered-fluid flow situations. In the petroleum industry as well as 
in other engineering and technological fields, a stratified two-phase/two-layered fluid flow often occurs. For 
example, in geophysics, it is so important to study the interaction of the geomagnetic field with the hot 
springs/fluids in geothermal regions, in which, once the interaction of the geomagnetic field with the flow 
field is known, then one can easily find the temperature distribution from the well known energy equation. 
Moreover, the temperature distribution plays an important role in MHD generators, plasma physics, turbines, 
etc. Also it is a known fact that, to generate electricity, the temperature is used to run the turbine across a 
magnetic field. Further, recent studies show that magnetohydrodynamic (MHD) flows can also be a viable 
option for transporting conducting fluids in microscale systems, such as the flow inside micro-channel 
networks of a lab-on-a-chip device (Haim et al., 2003; Hussameddine et al., 2008). In micro-fluidic devices, 
multiple fluids can be transported through a channel for different reasons. For example, an increase in 
mobility of a fluid may be achieved by stratification of a highly mobile fluid or mixing of two or more fluids 
in transit may be designed for emulsification or heat and mass transfer applications. In this regard, magnetic 
field-driven micro-pumps are an increasing demand due to their long-term reliability in generating flow, low 
power requirement and mixing efficiency (Qian et al., 2002; Weston et al., 2010). 
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 The unsteady magnetohydrodynamic flow and heat transfer, due to the imposed 
oscillations/impulsive motion of a boundary or boundary temperature under the presence of an external 
magnetic field has received much attention. The problem of magnetohydrodynamic effects on the unsteady 
Couette flow was investigated by Tao (1960), Katagiri (1962) and many others. Muhuri (1963) considered 
the flow formation in Couette motion of an electrically conducting fluid subject to a magnetic field under 
different conditions. Gupta (1960) studied the magnetohydrodynamic flow near an accelerated plate. This 
problem was extended by Soundalgekar (1967) with taking another parallel plate at a finite distance from the 
accelerated plate. Stanisic et al. (1962) extended Schlichting’s (1955) problem to the case of a 
hydromagnetic fluid flow between two oscillating flat plates. Varma and Gaur (1972) investigated an 
unsteady flow and temperature distribution of a viscous incompressible fluid flow between two parallel flat 
plates. Pallath Chandran et al. (1998) discussed an unsteady hydromagnetic free convection flow with heat 
flux and accelerated boundary motion. Raju and Murty (2005) studied quasi-steady state solutions of an 
unsteady ionized hydromagnetic flow and heat transfer between two parallel walls in a rotating system.  
 All the above mentioned studies are related to single-fluid flow configurations. But most of the 
problems related to the petroleum industry, geophysical fluid dynamics, plasma physics, 
magnetohydrodynamics and many such areas involve multi-layered-fluid flow situations. Transportation and 
extraction of the products of oil are other obvious applications using a two-phase system to obtain the 
increased flow rates in an electromagnetic pump from the possibility of reducing the power required to pump 
oil in a pipe line by a suitable addition of water (Shail, 1973). There are several investigations with regards to 
both experimental and theoretical aspects of magnetohydrodynamic two-phase/two-layered fluids flow 
problems, which are available in the literature during the last few decades [viz., Lielausis, 1975; Michiyoshi 
et al., 1977; Chan, 1979; Chao et al., 1979; Dunn, 1980; Gherson, 1984; Lohrasbi and Sahai, 1989; Serizawa 
et al., 1990; Malashetty and Leela, 1992; Ramadan and Chamkha, 1999; Raju and Murty, 2006; Tsuyoshi 
Inoue and Shu-Ichiro Inutsuka, 2008; etc]. But research studies corresponding to the unsteady fluid flow  
problems are limited in number. Moreover, a significant number of practical problems dealing with 
immiscible fluids are unsteady in nature. Also, in many practical problems, it is advantageous to consider 
both immiscible fluids as electrically conducting, one of which is highly electrically conducting compared to 
the other. The fluid of low electrical conductivity compared to the other is helpful to reduce the power 
required to pump the fluid in MHD pumps and flow meters. In view of these; Chamkha (2004) studied the 
unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with 
heat absorption. Umavathi et al. (2006) investigated the oscillatory Hartmann two-fluid flow and heat 
transfer in a horizontal channel. Raju and Sreedhar (2009) discussed an unsteady two-fluid flow and heat 
transfer of conducting fluids in channels under a transverse magnetic field. 
 So, keeping in view the wide area of practical importance of multi-layered fluid flows as mentioned 
above, it is the objective of the present study to investigate the behaviour of flow formation and heat transfer 
aspects of an unsteady MHD two-fluid flow of electrically conducting fluids in a horizontal channel bounded 
by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field. 
The flow is driven by a constant uniform pressure gradient in a channel bounded by two parallel porous 
plates, one being stationary and the other oscillating. The two fluids are assumed to be incompressible and 
electrically conducting with different viscosities, thermal and electrical conductivities. The transport 
properties of the two fluids are considered as constant and the bounding plates, (which are infinite in extent) 
are maintained at constant and equal temperatures. The governing partial differential equations are reduced 
to the ordinary linear differential equations using two-term series. These equations are solved analytically to 
obtain exact solutions for the velocity distributions, such as, u1, and u2 in the two regions, respectively, by 
assuming that their solutions are a combination of both the steady state and time dependent components of 
the solutions. Closed form solutions for temperature distributions, namely, �1 and �2 in the two regions are 
determined by using the solutions of velocity distributions obtained already. Numerical values of the velocity 
and temperature distributions are computed for different sets of values of the governing parameters involved 
in the study and their corresponding profiles are also plotted to illustrate the details of the flow and heat 
transfer characteristics and their dependence on the governing parameters, such as the Hartmann number, 
porous parameter, viscosity ratio, electrical and thermal conductivities, height ratio. Also an observation is 
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made how the velocity and temperature distributions vary with the hydromagnetic interaction in the case of 
steady and unsteady flow motions. 
 Moreover, the results of this study are expected to be useful in understanding the effect of the 
presence of a slag layer on heat transfer characteristics of a coal fired MHD generator, flow meters, in 
nuclear reactor technology and in space crafts, etc. Also, such flows are encountered in many industrial 
applications, such as liquid metals, metal working process, geothermal energy extracts and many other 
applications. It is also important to understand the dynamics of interfaces between the fluids and its effect on 
the transport characteristics of the system.  
 This paper is arranged as follows. In § 1, introduction of the problem is given. The equations of 
motion, energy, the boundary and interface conditions are given in § 2. Closed form solutions of the problem 
are given in § 3, while § 4 gives the results and discussion based on the velocity and temperature profiles, 
which are shown in Figs 2 to 12. 
 
2. Mathematical formulation of the governing equations of motion, energy, boundary and 

interface conditions 
 
 Consider an unsteady hydromagnetic two layered-fluid flow in a horizontal channel consisting of 
two infinite parallel plates extending along the x- and z-directions defined by the planes y = h1 and y = -h2, as 
shown in Fig.1, which represents the physical configuration and flow model choosing the origin midway 
between the two plates. The flow in both upper and lower regions is driven by a common constant pressure 

gradient p
x
�� ��� ��	 


.  

 

 
 

Fig.1. Physical configuration and flow model. 
 
 The fluid is subjected to a constant section v0 applied normal to both the plates and hence if 
� � � �, , , , ,i i iu v w i 1 2  are the velocity components in the two fluids, then the equation of continuity iq 0��   

gives � �i 0 0v v v 0 � �  where iq  � �, ,i i iu v w . The regions 0 � y � h1 and –h2 � y � 0 are occupied by two 
immiscible electrically conducting, incompressible fluids with different viscosities ,1 2� � , thermal 
conductivities ,1 2K K  and electrical conductivities ,1 2� � . A constant magnetic field of strength B0 is 
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applied transverse to the flow direction, that is along the y-direction. Also, a constant electric field E0 is 
applied in the z-direction. The induced magnetic field is neglected by assuming that it is small when 
compared with the applied field. The two bounding plates are maintained at a constant temperature Tw. With 
these assumptions, the non-dimensional governing equations of motion, current and energy and the 
corresponding boundary and interface conditions (as in Lohrasbi and Shahai 1989; Malashetty and Leela 
1992 and Raju and Murty, 2005) for both fluid regions are expressed as 
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  (2.4) 

 
 Here subscripts 1 and 2 represent the values for Region-I and Region-II, respectively, where u1, u2 
are the x-component of fluid velocities; T1, T2 are the fluid temperatures in the two regions, respectively, and 
‘t’ is the time. The boundary conditions on velocity are the no-slip boundary condition at the lower plate and 
an oscillatory one at the upper plate. The boundary conditions on temperature are isothermal conditions. We 
also assume the continuity of velocity, shear stress, temperature and heat flux at the interface between the 
two fluid layers at y = 0.  
 The boundary and interface conditions for the two fluids are considered as  
 
  � �1 1u h 0 ,               for          ,t 0�              
          (2.5) 
   = Real � �i te �� ,           for            t 0� .   

 
  � �2 2u h 0 ,  (2.6) 
 
  � � � �1 2u 0 u 0 ,  (2.7) 
 

  at1 2
1 2

du du y 0
dy dy

�  �         (2.8) 

 
where � (amplitude) is a small constant quantity such that 1� �� and �  is the frequency of oscillation at the 
plate, and the perturbed fields initially are zero, because the system is at rest for .t 0�  
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 Since the walls are maintained at the same temperature, the boundary and interface conditions on 
temperature for both the fluids are given by 
 
  � �1 1 wT h T ,  (2.9) 
 
  � �2 2 wT h T�  , (2.10) 
 
  � � � �1 2T 0 T 0 ,              (2.11) 
 

  at .1 2
1 2

dT dTK K y 0
dy dy

          (2.12)  

 
 The above Eqs (2.1)-(2.4) are non-dimensionalised using the following dimensionless quantities 
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,          eR  (electric load parameter) = .0 0 pE B u  (2.13)  

 
 With the use of these transformations and Eq.(2.13) and for simplicity neglecting the asterisks, the 
non-dimensional forms of Eqs (2.1) to (2.4) for both the fluid regions are written as 
 
Region-I 
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        (2.17) 

 
 The non-dimensional forms of the velocity, temperature and interface boundary conditions become 
 
  � �1u 1 0�  ,              for           ,t 0�  
   (2.18) 
  = Re � �i te �� ,              for            .t 0�    

 
  � � ,2u 1 0�                                   (2.19) 
 
  � � � � ,1 2u 0 u 0                           (2.20) 
 

  � �/ at ,1 2du du1 h y 0
dy dy

 �                    (2.21) 

 
  � � ,1 1 0� �    (2.22) 
 
  � � ,2 1 0� �                                                                                               (2.23) 
 
  � � � � ,1 20 0�  �                                                                                                     (2.24) 
 

  � �� �/ / at .1
2

d 1 h d dy y 0
dy
�

 � �    (2.25) 

 
 Condition (2.19) represents the no-slip condition at the lower wall and the condition (2.18) is due to 
oscillation of the upper wall. Conditions (2.20) and (2.21) represent the continuity of velocity and shear 
stress at the interface y = 0. The conditions (2.22) and (2.23) represent the isothermal conditions, while the 
conditions (2.24) and (2.25) represent the continuity of temperature and heat flux at the interface y = 0. 
 
3. Solutions of the problem 
 
 The governing momentum Eqs (2.14) and (2.16) along with the energy Eqs (2.15) and (2.17) are to 
be solved subject to the boundary and interface conditions (2.18) and (2.25) for the velocity and temperature 
distributions in both regions. These equations are coupled partial differential equations that cannot be solved 
in a closed form. But they can be reduced to ordinary linear differential equations by assuming the following 
two term series 
 
  � � � �, ( cos ) ( ),1 01 11u y t u y wt u y � �                                                                     (3.1) 
 
  � � � � � �, ( cos ) ,2 02 12u y t u y wt u y � �   (3.2) 
 
  � � � � � �, ( cos ) ,1 01 11y t y wt y�  � � � �                                                                    (3.3) 
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  � � � � � �, ( cos ) ,2 02 12y t y wt y�  � � � �   (3.4) 
 
here, the terms � � � � � � � �, and ,01 02 01 02u y u y y y� �  are velocity and temperature distribution in the basic 

steady state case in two regions, while, � � � � � � � �, and ,11 12 11 12u y u y y y� �  are the corresponding time 

dependent components of the solutions, which are the factors of Real � �i te ��  to be determined with the help 

of Eqs (2.14) to (2.17).  
 By substituting the expressions (3.1)-(3.4) into Eqs (2.14)-(2.17) and separating the steady state and 
transient time varying components, the following differential equations for � � � �,01 02u y u y  and 

� � � �,01 02y y� � ; also, � �11u y , � �12u y and � � � �,11 12y y� �  in pairs are obtained in both regions as 
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For the transient time dependent part 
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For the steady-state part 
 

  ,
2

02 02
8 02 92

d u du a u a
dydy

� � �          (3.9) 

 

  .3 4 3 4 25
2

2m y 2m y m y m y b y02 02
35 36 37 38 39 402

d d b e b e b e b e b e b
dydy

� �
� �  � � � � � �           (3.10) 

 
For the transient time dependent part 
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 The corresponding boundary and interface conditions on velocity and temperature become: 
 
For the steady-state part 
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For the transient time dependent part 
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 The above Eqs (3.5) to (3.12) along with the boundary and interface conditions (3.13) to (3.20) 
represent a system of ordinary linear differential equations and conditions, these can be solved in a closed 
form separately in two parts. Hence, the final solutions for velocity and temperature distributions of the 
unsteady flow problem are obtained as: 
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Region-II 
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 The solutions of the non-periodic terms represent the steady-state flow solutions for both fluid 
regions, without going into detail, the steady-state velocity and temperature profiles are shown in Figs 2 to 
12. The solution of the periodic terms gives the transient velocity and temperature distribution in both 
regions of the channel. The solutions for the unsteady problem given by Eqs (3.21)-(3.24) are evaluated 
numerically for different non-dimensional governing flow parameters and these results are plotted, in Figs 2 
to 12. Here the value for �  is fixed at 0.5 for all graphs.  
 The constants appearing in the above solutions are given in the Appendix. 
 
1.4. Results and discussion 
 
 The problem of an unsteady MHD two immiscible fluid flow and heat transfer through a horizontal 
channel bounded by two parallel porous plates is investigated analytically in the presence of an applied 
transverse magnetic field. The two fluids are assumed to be incompressible and electrically conducting with 
different viscosities, thermal and electrical conductivities. The resulting partial differential equations are 
reduced to ordinary linear differential equations and solved analytically by means of the assumed solutions 
using two-term series. Exact solutions for the velocity distributions, such as, u1, u2 respectively in the two 
regions are obtained. Then the closed form solutions for temperature distributions, namely, �1 and �2 in the 
two regions are determined by making use of the already obtained solutions of velocity distributions. The 
profiles for the velocity and temperature distributions for both steady state and unsteady state flow are shown 
in Figs 2 to 12 and the important features of hydromagnetic and thermal state of the fluids in the two regions 
by varying one of the governing parameters, while the others are held fixed are discussed. The solid lines 
show the profiles for an unsteady motion and the dash-dot lines show the steady flow. 
 The effect of varying the Hartmann number M on velocity and temperature distributions is shown in 
Figs 2 and 3. It can seen that the effect of increasing M increases the velocity distributions u1, u2 and 
temperature distribution �1, �2 in the two fluid regions. This implies that the velocity of the fluid increases as 
the strength of the magnetic field increases, which means the body force is an accelerating force. Due to this 
accelerating force the fluid temperatures are actually increased and hence, at the commencement of motion 
this tendency is significant. Also, the maximum velocity in the channel tends to move above the channel 
centre line towards region-I (i.e., in the upper fluid region) as the Hartmann number M increases, when all 
the remaining governing parameters are fixed. 
 Figures 4 and 5 show the effect of the porous parameter �  on both velocity and temperature 
distributions in the fluid regions. From Fig.4 it is noted that the velocity distributions in the two regions 
increase as �  increases. The maximum velocity distribution in the channel tends to move above the channel 
center line towards region-I as �  increases. While from Fig.5, it is seen that the temperature increases in the 
upper region and decreases in the lower as �  increases. 
 The effect of varying the electrical conductivity ratio � on the velocity and temperature distribution 
is shown in Figs 6 and 7. It is noted that both velocity and temperature distributions as well as � increase. 
The maximum velocity distribution in the channel tends to move above the channel centre line towards 
region-I as �  increases, while the temperature distribution in the channel tends to move below the channel 
centre line towards region-II.   
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Fig.2. Velocity profiles ,1 2u u  (unsteady flow), * *,1 2u u  (steady flow) for different M and 
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Fig.3.  Temperature profiles ,1 2� �  (unsteady flow), * *,1 2� �  (steady flow) for different M and 
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Fig 3. Temperature profiles �1,�2 (unsteady 
flow), �1*,�2* (steady flow) for different M and 
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Fig.4.  Velocity profiles ,1 2u u  (unsteady flow), * *,1 2u u  (steady flow) for different �  and M=2, 

. , . , , . , . , , / .e0 333 0 1 R 1 h 0 75 0 5 1 t�  �   �  �  �   � �  

Fig 4. Velocity profiles u1,u2 (unsteady flow), 
u1*,u2* (steady flow) for different � and      

M = 2,  � = 0.333, � = 0.1 ,  Re = -1, h = 0.75,  
� = 0.5, � = 1, t = �/�. 
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Fig.5.  Temperature profiles ,1 2� � (unsteady flow), * *

,1 2� � (steady flow) for different �  and ,1�   M=2,
. , . , , . , . , , /e0 333 0 1 R 1 h 0 75 0 5 1 t�  �   �  �  �   � � . 

 

Fig 5.Temperature profiles �1,�2 (unsteady 
flow), �1*,�2* (steady flow) for different � and 
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Fig.6. Velocity profiles ,1 2u u  (unsteady flow), * *,1 2u u  (steady flow) for different �  and M=2

. , . , , . , . , , / .e0 333 h 0 75 R 1 0 8 0 5 1 t�    � �  �  �   � �  

Fig 6. Velocity profiles u1,u2 (unsteady flow), 
u1*,u2* (steady flow) for different � and     

M = 2 , � = 0.333, h = 0.75 ,  Re = -1, � = 0.8 ,  
� = 0.5, � = 1, t = �/�. -1.5
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Fig.7. Temperature profiles ,1 2� �  (unsteady flow), * *
,1 2� �  (steady flow) for different �  and 

, M , . , . , , . , . , , / .e1 2 0 333 h 0 75 R 1 0 2 0 5 1 t�   �    � �  �  �   � �  
 

 The effect of the ratio of viscosities � on velocity and temperature distributions of the two fluids is 
shown in Figs 8 and 9, respectively. From Fig.8, it is observed that an increase in � increases the velocity 
distributions in the two fluid regions. But from Fig.9, the temperature distributions �1 and �2 are found to 
decrease as � increases. The maximum velocity distribution in the channel tends to move above the channel 

Fig 7.Temperature profiles �1,�2 (unsteady 
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centre line towards region-I as �  increases, while the temperature distribution in the channel tends to move 
slightly above the channel centre line towards region-I. 
 

 
 

Fig.8. Temperature profiles ,1 2� �  (unsteady flow), * *
,1 2� �  (steady flow) for different �  and 

M , . , . , , . , . , , / .e2 0 1 h 0 75 R 1 0 8 0 5 1 t �    � �  �  �   � �  

Fig 8. Velocity profiles u1,u2 (unsteady flow), 
u1*,u2* (steady flow) for different  � and     
M = 2, � = 0.1, h = 0.75 , Re = -1, � = 0.8 ,    

� = 0.5, � = 1, t = �/�.-1.5
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Fig.9.  Temperature profiles ,1 2� �  (unsteady flow), * *
,1 2� �  (steady flow) for different �  and ,1�   M=2,

. , . , , . , . , , /e0 1 h 0 75 R 1 0 2 0 5 1 t�    � �  �  �   � � . 
 
 The effect of varying the height ratio h on velocity and temperature distributions is shown in Figs 10 
and 11, respectively. It is found that an increasing h increases the velocity and temperature distributions in 
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the two regions. Also, the maximum velocity and temperatures in the channel tend to move above the 
channel centre line towards region-I as h increases.  
 

 
 

Fig.10.  Velocity profiles ,1 2u u  (unsteady flow), * *,1 2u u  (steady flow) for different h and 
M , . , . , , . , . , , / .e2 0 333 0 1 R 1 0 8 0 5 1 t �  �   � �  �  �   � �  

Fig 10. Velocity profiles u1,u2 (unsteady 
flow), u1*,u2* (steady flow) for different h 
and  M = 2 , � = 0.333, � = 0.1 , Re = -1,   

� = 0.8 , � = 0.5, � = 1, t = �/�. -1.5
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Fig.11. Temperature profiles ,1 2� �  (unsteady flow), * *
,1 2� �  (steady flow) for different h and ,1�   M=2,

. , . , e0 333 0 1 R 1�  �   � , . , . , , /0 2 0 5 1 t�  �  �   � � . 
 

 The effect of the thermal conductivity ratio � on the temperature distribution is shown in Fig.12. It is 
observed that an increasing � increases the temperature distribution in both fluid regions. Also, the maximum 
temperature in the channel tends to move above the channel centre line towards region-I as �  increases. 

Fig 11. Temperature profiles �1,�2 (unsteady 
flow), �1*,�2* (steady flow) for different h and 
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Fig.12. Temperature profiles ,1 2� �  (unsteady flow), * *
,1 2� �  (steady flow) for different �  and .0 2�  ,M=2,

. , . , , . , . , , /e0 333 0 1 R 1 h 0 75 0 5 1 t�  �   �  �  �   � � .  
 

Fig 12.Temperature profiles �1,�2 (unsteady 
flow), �1*,�2* (steady flow) for different 	 and 

� = 0.2 , M = 2 , � = 0.333, � = 0.1, Re = -1,   
h = 0.75, � = 0.5, � = 1, t = �/�.-1.5
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5. Conclusions 
 
 The governing equations for an unsteady MHD two-fluid flow and heat transfer of an electrically 
conducting fluids through a horizontal channel bounded by two parallel porous plates (in which one is 
stationary and the other oscillating) under the influence of an applied transverse magnetic field are 
formulated, assuming that the two-fluids are of different viscosities, electrical and thermal conductivities. 
The resulting partial differential equations are transformed in to a set of ordinary linear differential equations 
using two-term series as a combination of both steady state and transient time dependent parts and are solved 
in closed form. Numerical calculations of these solutions are performed and these are represented graphically 
to discuss the behaviour of the flow and heat transfer and their dependence on some of the physical 
parameters involved in the study, such as the Hartmann number M, porous parameter � ; the ratios of 
viscosities � , heights h, electrical and thermal conductivities: � and � respectively. It is found that when the 
strength of the magnetic field is increased, the velocity and temperature are enhanced and hence the fluid 
velocity increased. Also, the maximum velocity in the channel tends to move above the channel centre line 
towards region-I (i.e., upper fluid region) as the strength of the magnetic field is increased, when all the 
remaining governing parameters are fixed. The velocity distributions in the two regions increase as �  
increases. The maximum velocity distribution in the channel tends to move above the channel center line 
towards region-I as �  increases. It is observed that the temperature increases in the upper region and 
decreases in the lower as �  increases. And it is found that the effect of increasing the thermal conductivity 
ratio increases the temperature distributions in both the regions. Also, the maximum temperature in the 
channel tends to move above the channel centre line towards region-I (i.e., for the fluid in the upper region). 
Finally it is concluded that the velocity distributions in the two regions are pronounced more in the unsteady 
state when compared to the steady case, but the temperature distributions in the two regions is pronounced 
more in the steady state case than in the unsteady state case. 
 Finally, it is concluded that with the suitable values of ratios of the Hartmann number, porous 
parameter, electrical and thermal conductivities, also heights, the velocity and temperature can be increased. 
Although the validity of the obtained results is not verified practically, the fact is that the solutions satisfy all 
boundary and interface conditions (as shown in the profiles) and hence there is some conformity with the 
theoretical results are concerned. 
 
Nomenclature 
 

 

, ,

,
1 1 1

1 1

a b c

d m
  – functions/real constants represented in the solutions 

 B0  – applied uniform transverse magnetic field 
 E0  – constant electric field in the z-direction 
 h – ratio of the heights of the two regions 
 h1  – height of the channel in the upper region 
 h2  – height of the channel in the lower region 

 
,1 2K K   – thermal conductivities of the two fluids 

 M  – Hartmann number 
 P – pressure 
 Re  – electric load parameter 
 T1, T2 – temperatures of the fluids in the two regions respectively 

 
,

1 2w wT T
 

– constant temperatures at both the walls  
 t  – time 

 pu   – =
2
1

1

p h
x
�� ��� �� �	 


, the characteristic velocity  

 u1, u2  – x- component of velocity distributions in the two fluid regions    
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u y
  – velocity distributions in the basic steady state case in two regions 
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u y   – time dependent velocity components 

 (x, y, z)  – space co-ordinates  
 �   – ratio of the viscosities 

 �   – ratio of thermal conductivities  
 �   – amplitude (a small constant quantity such that 1� �� ) 

 ,1 2� �  – non-dimensional forms of temperature distributions of  the two fluids 
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01

02

y

y

�

�
  – temperature distributions in the basic steady state case in two regions 

 

� �
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11

12

y

y

�

�
  – time dependent components of the temperatures in the two regions 

 �  – porous parameter 

 ,1 2� � .  – viscosities of the two fluids 

 �   – density 
 �  – ratio of electrical conductivities   

 ,1 2� �   – electrical conductivities of the two fluids 

 �   – frequency of oscillation 
 
Subscripts 
 

 1,2 – refers to the quantities in the upper and lower fluid regions respectively 
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